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ABSTRACT

Shearography is a recognized interferometric technique in non-destructive testing to detect defects. Defects are
detectable in wrapped phase maps because they are characterized in their neighborhood by singular fringes.
They are detectable in unwrapped phase maps, because they induce unexpected phase values. By analyzing
the length of unexpected phase values area in shearing direction, and by taking into consideration shearing
amount, defect size can be locally estimated. To examine this length, we propose to locally determine borders of
unexpected phase values region by analyzing wavelet transform of unwrapped phase map profiles. The borders
of defect area are found by examining the convergence at fine scales of lines of wavelet modulus maxima. To
have a physical interpretation of this convergence, second derivate of a Gaussian is employed as mother wavelet:
estimated borders of defect region are some maximal curvature points of unwrapped phase map profile. To finish,
we show that shearing amount does not affect estimated defect size with our methodology. So, shearography is
adapted to quantify defects in shearing direction. Currently, in any other direction, an ambiguity exists on the
position where the local estimation of defect width is performed. The methodoly cannot be employed.
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1. INTRODUCTION

Shearography is a recognized interferometric technique in industrial applications to measure the gradient of
displacements, when displacements derivate is in the range of the ratio between the employed wavelength A and
the shearing amount.! To measure the gradient of displacements and not the displacements themself as many
other interferometric techniques (holographic or speckle interferometries? 3), shearography consists in shearing
the object beam in two partially overlapped beams, the overlap inducing the interference of the two beams. The
two beams correspond to the arms of the interferometer: one can be interpreted as the reference beam for the
other one, and inversely.

The irradiance I of the interference is given by the relation
I =2Iy.[1+~.cos(9)], (1)

where [y is the average irradiance of the beams, « is the visibility of the interference and ¢ is the phase difference
between the two interfering beams.

By recording at least three phase shifted interferograms with a well-known phase shift «, the phase difference
¢ can be estimated.? Generally, the phase-shifting is realized by employing a piezo-transducer or a liquid crystal
display. With a = /2 and a four-buckets algorithm, the recorded interferograms give the equations system

I =21y [1+ 7. cos ()]

I, =21y [1 + v.cos (¢ + 7/2)]

I3 =215 [1 + v.cos (¢ + 7))
Iy =21y [1+ y.cos (¢ + 37/2)]

E-mail: f.michel@deios.com, Telephone: +32 (0)4 372 93 09, Fax: +32 (0)4 372 93 17
DEIOS web page: www.deios.com, HOLOLAB web page: www.phg.ulg.ac.be/Hololab




Figure 1. Left to right: wrapped phase map, unwrapped phase map and spatial out-of-plane displacement derivate
distribution. A mean mask 3x3 has been applied to wrapped phase map at Sinus/Cosinus level before unwrapping. The
phase unwrapping is based on a growing region algorithm.® The shearing is in the X direction and its amount is 8.4 mm.
A = 532nm.

with I;, the irradiance of the i*? recorded interferogram. The phase difference is then estimated with the relation?

Iy — 1T
¢ = arctan Ij — I: (3)

By estimating ¢ before and after a strain application, and by subtracting these phase estimations, we obtain
a wrapped phase map A whose fringes are iso-phase curves, modulo 27. A continuous spatial phase distribution
Ag is then obtained by unwrapping this wrapped phase map.® TIn shearography, and if the shearing amount is
small, the unwrapped phase map A, is linked to the gradient of displacements by the relation!

o= [(82m) 57+ (Rem) g (122) 7 "

where K7 is the sensitivity vector of the setup; u, v, w are the components of the displacement vector; €3, &, &2
are the unity vectors in the X, Y and 7 directions; z; is the shearing direction and dx; is the shearing amount
in the z; direction.

If the sensibility vector is perpendicular to the object plane (X, Y), the x and y components of I?: are equal
to zero. The Equation (4) is reduced to Equation (5) and only the gradient of out-of-plane displacements are
analyzed:

K %) O s (5)

Ay = (Ks.ez o7,

To clarify theoretical ideas described previously, an example of phase maps obtained by an out-of-plane
displacements derivate measurement is resumed in Figure 1. The experience refers to charging a spherical 12 g
mass on the center of a steel plate.” The employed setup is an almost-common path shearographic interferometer
using the separation of the polarization states.®

Shearography allows to measure the gradient of displacements. So if the studied object has defects that affect
surface displacements, then wrapped phase map presents singular fringes, and the unwrapped phase map has
unexpected phase values regions. So shearography can be employed in non destructive testing (NDT). Figure 2
shows an example of NDT by shearography. The defect is a cavity of 10 x 10 x 5 mm? on the back side of a steel
plate with a thickness of 7 mm. The applied strain is a 10 s during infrared radiation created by a 250 Watts
IR lamp placed at 10 cm from the front of the plate. The deformed state of the object is an instant t,.¢q; of the
thermal relaxation after turning off the IR lamp. Many other NDT examples can be found in literature. 910
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Figure 2. Wrapped and unwrapped phase maps, filtered by a 3x3 mean mask at Sinus/Cosinus level, of defected steel
plate, at different ¢,¢;,, instants. dz = 6.2 mm.

Literature and previous example attest that shearography is an interresting technique to detect defects. In
this paper, we will show that shearography can also be employed to estimate the length of defects in the shearing
direction. In Sect. 2, we present the general idea of the methodology, for a shearing in the X direction. In Sect.
3 and 4, we implement a wavelet transform based algorithm to carry out the methodology and we apply it to an
experimental NDT example. In Sect. 5, we analyze the influence of the shearing amount on the estimated defect
length. We conclude that shearography can be employed to quantify defect size in the shearing direction. In
any other direction, currently, methodology cannot be employed because there is an ambiguity on the position
where the local estimation of defect size is performed, if the defect shape is not previously known. Finally, note
that the methodology described in this paper can be adjusted to be employed in many other interferometric
techniques.

2. METHODOLOGY TO QUANTIFY DEFECTS DETECTED BY SHEAROGRAPHY

A detected defect is characterized in unwrapped phase map by an unexepected phase values region. On the
profile y = y4 of the unwrapped phase map, designed by AY™Y*(z), the defect is included between the borders,
z1 and xo, of the unexpected phase values area, see Figure 3. So, the defect length in the sheared image, i.e. the
detector plane, and at y = y4 level, L(y,), is estimated by the relation

L(ya) = z2(ya) — z1(ya); 2(ya) > z1(ya)- (6)

In the non-sheared image, i.e. in the original object image, and for a shearing parallel to the X direction, the
length of the defect is shorter than L(y,4), because L(yq) is the length of the two basic sheared defects union. In
the non-sheared image, the defect length in the shearing direction is estimated by the Equation 7, see Figure 4.

L (ya) = 23 (ya) — 27" (ya) = L(ya) — b 9

L% (y4) is not the geometric, i.e. physical, defect length, but is the length of the impact region of the physical
defect. In this paper, no difference is done between these two notions, because in practice the impact region of
the physical defect is the critical region of the object.
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Figure 3. Unwrapped phase map of a wood plate with a 15 x 15 x 1 mm? cavity. The thickness of the plate is 8 mm.
dx = 55 mm. The applied strain is a 2 s during radiation by a IR lamp (250 Watts) placed at 30 cm from the front of the
wood plate. treiqr = 15 s.

obj obj
a > >
obj

8 3x v y |

x
x

X

- I
an] |xob/_xab/
=3 i |ouiminasssss
X G X, - X,
Xobj Xab/ X
b) v v I(x4)
I> 5 y
E—
|
[
[ J
X X3
Xobj Xob/ X
C) yoo/ ynb/ I(Xu)
< 8x y
_—
|
[
[&shs J
X X5

Figure 4. Left: non-sheared image of an object. The big rectangle is the object. The small one and the triangle are

defects. Right: sheared image of the left image. a) matching between L(yq) and L°% (y4). b) 25 = z4. ¢) 25 = x4+ dz.



By analogy, defect is delimited at # = x4 level by two borders, y;1(z4) and y2(x4), and the defect width on
this level, [(xz4), is given in the sheared image by the Equation 8, see Figure 3.

lzq) = y2(wa) — y1(za),y2(2a) > y1(xa). (8)

In the non-sheared image and for a X shearing direction, the width 1°%7 (z4) is equal to the previous estimated
width I(x4). No correction dz must be done because we are in the direction perpendicular to the shearing one.
Unfortunatly, currently, an ambiguity exists on the estimated width. We cannot say where the estimation is
done in the non-sheared image because in this last one, the estimation is done at xzb] = x4 or at :L';b] =1x4+0x,
depending if defect is wider at 29 = z, or at 2°) = x4 + 0z, respectively, see Figure 4. The presented
methodology cannot currently be employed to locally estimate the defect size in the direction perpendicular to
the shearing one.

In practice, it is necessary to have a completely objective and repeatable estimations of z; and x5 borders. By
considering that these borders correspond to some important phase variations of the signal A%~Y¢(z), they can
be estimated with a wavelet transform based algorithm, because wavelet transform is acknowledged to be highly
capable to detect important variations and/or singularities of a signal.!!™'* The employed wavelet transform
algorithm is presented in Sect. 3.

Note that the presented methodology can also be employed in many other interferometric techniques as
speckle interferometry. In this case, there is not sheared image and we have L°% (yq) = L(yq), 1°% (zq) = l(x4)

and the ambiguity relative to z, does not exist: 2% = z,.

3. INTEGRATION OF THE METHODOLOGY WITH A WAVELET TRANSFORM
MODULUS MAXIMA BASED ALGORITHM

A wavelet ¥(z) is a function that should satisfy the admissibility criterial!

+o0
/ U(z)dz = 0. (9)

— 00

This wavelet, the mother wavelet, is dilated with given s scaling factors and translated with given u position
terms to give a lot of functions ¥,, 4(z), named daughter wavelets,!!

T, (z) = %xy (”C;“) (10)

The daughter wavelets are the basis functions of the transform, i.e. the wavelet transform of a f(x) signal consists
in making the convolution between the daughter wavelets and the signal. The wavelet coefficient Wf(u,s) at the
x = u position and at the s scale is given by the relation®!

—+o00

W f(u,s) = / F@) ¥ (2)dz, (11)

—00
where * symbol designs the conjugate complex.

To determine the important variations of a signal f(x), the methodology consists in'!~14:

1. calculating the wavelet coefficients for all desired (u, s) couples;

2. determining the local maxima of the modulus of the wavelet transform per s scale. The local maxima of the
modulus of the wavelet transform are the coefficients Wf(u,s) verifying |W f(uo, so)| > |W f(uo £ 1, 50)|;

3. building the trajectories of local maxima in the (u, s) plane by connecting the closest maxima which belong
to two consecutive values of s;



4. analyzing the convergence of these trajectories to fine s scales. The convergence points u are the position
of the singularities or/and of the important variations of the studied signal.

In this kind of application, the employed wavelets are real, e.g. the derivates of a Gaussian. The complex
wavelets, e.g. Morlet Wavelets, are usually used to analyze the frequencies evolution of the signal.!>18 The
derivates of a Gaussian can be interpreted as multiscale differential operators!'! : if the mother wavelet is the
nt" derivate of a Gaussian, then Wf(u, s) is the n*”* derivate of signal at x = u, calculated on a s spatial domain
width. If the mother wavelet is the first derivate of a Gaussian, the wavelet coefficients are the slopes of the
signal. If the mother wavelet is the second derivate of a Gaussian, the wavelet is named mexican hat and the
wavelet coefficients are the curvatures of the signal. We will employ the mexican hat as mother wavelet. The
estimated borders z; and x» shall be interpreted as some maximum curvature points of f(x). The normalized
mexican hat mother wavelet ¥(z) is defined by the relation!!

_ T

U(x) \/§7T($2 —1)exp <%> (12)

and the daughter walelets are

_2ym 1 z—u\’ (z —u)?
U,.s(z) = ﬁ%(( . ) —1) ea:p(—T>. (13)

In summarise, to find the borders x; and x5 of the defect on the profile y = y4 of the unwrapped phase map,
AY=Y4(z), we calculate the wavelet transform of the signal AY~"¢(z) with the mexican hat wavelet, we determine
the local modulus maxima of this transform, we analyze the trajectories of these local modulus maxima in the
(u, s) plane and we estimate the convergence of these trajectories at fine s scales.

4. APPLICATION OF THE METHODOLOGY

Apply the previously described methodology on the Az:% (z) signal of the unwrapped phase map presented in
Figure 3. The first step in our methodology consists in calculating the wavelet transform of the signal, with the

mexican hat mother wavelet. The normalized wavelet coefficient modulus ‘WAZ:% (x)‘ are showed in Figure

5. In this (u, s) plane, the unexpected phase values are represented by four ridges. The first one is relative
to the curvature in the x; neighborood, the second one is connected to the curvature of the signal minimum,
the third one is linked to the curvature of signal maximum and the last one is concerning the curvature in the
neightborood of x5, according to the interpretation of the mexican hat mother wavelet.

The wavelet transform being calculated, the second step in the methodology consists in determining the local
coefficient modulus maxima of every s values. The wavelet coefficient WA%Z83 (u, s) is a modulus maximum if

WAZZSS(U,S)‘ > ‘WAZZSS(U + 1,s)|. Every local modulus maximum belonging to s = s¢ line of the (u, s)
plane is then connected to the nearest modulus maximum of the s = sy — 1. This construction of the trajectories
of the modulus maxima is guaranteed and relatively simple, because the wavelets are derivated from a Gaussian.
For this kind of wavelet, the modulus maxima lines are always continuous along the s scales (Hummel, Poggio
and Yuille proposition'!). In Figure 5, the right image represents the trajectories of the maxima of the wavelet
transform modulus seen in left image.

Theoretically, the 1 and z9 borders are respectively the u values where the modulus maxima lines of the first
and fourth ridges, T, (u, s) and Ty, (u, ), converge to fine scales, e.g. s = 1 pxl. Unfortunatly, with experimental
data, the fine scales are confused, because they are relative to the noise of the signal. Consequently, the
convergence of the trajectories are defined as the u values of the modulus maxima lines at a cut-off spatial
frequency, 1/s.. To work with a cut-off frequency adapted to the signal noise ratio, s. is determined by the
number of new trajectories that appear along the s scales, see Figure 6. By convention, we define s. as the
wavelet size for which one the number of new trajectories is just smaller or equal to 5% of the total number of
modulus maxima lines: s, = 6 pxl, in the presented example.
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Figure 5. Left: normalized wavelet coefficient modulus of A%~ (z) signal. Right: modulus maxima lines of the wavelet
transform. The T, (u,s) and T,,(u,s) trajectories are employed to estimate the position of the borders z; and x»,
respectively.
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Figure 7. Putting in emphasis of the estimated unexpected phase values region borders of the studied Ag:%(x) signal:
x1 = 149 pxl and x> = 225 pxl.

With a 1/6 pxl~! cut-off frequency, the convergence of the trajectories T}, (u, s) and Ty, (u, s) is respectively
equal to 149 pxl and 223 pxl, see Figure 6. The borders of the unexpected phase values area are then 149 pxl
and 223 pxl, see Figure 7. That induces L(y = 83) = 74 pxl.

The calibration of the interferometer states that one pixel is equal to 0.29 mm and the shearing amount is

5.51 mm. So the size of the defect impact region, L°% (y = 83), is 15.95 mm. The theoretical physical, e.g.
geometric, defect length is 15.0 mm.

5. INFLUENCE OF THE SHEARING AMOUNT

The defect studied in the Sect. 4 has been detected with some different shearing amounts. For each of them,
some phase maps have been calculated for different IR radiation times, t;gr, and t,¢., instants. Considering

several (t1g, trelae) couples allows to have a statistical sample of phase maps for the defect size estimation and
for every shearing amount.

The shearing amount affects the sensibility of the setup. The average distance L.,; between the extrema of
the unexpected phase values region of the Az:% (7) signal is function of the shearing amount,'® see Figure 8.

However, the shearing amount does not affect the average estimated defect length, see Figure 8. The shearing
amount has been introduced as corrective term in Equation 7. So, finally shearography can be employed to
estimate defect size in the shearing direction, if the employed methodology takes account of the shearing amount,
as it is the case in the methodology presented in this paper.

6. CONCLUSION

In conclusion, a methodology has been presented to quantify, in the shearing direction, the size of defects detected
by shearography. A wavelet transform modulus maxima based algorithm has been implemented to carry out
the methodology. The technique has then been applied to experimental examples in which well known defects
have been studied. It allows to estimate the defect with an relative error smaller than 10 %. In a last step, the
influence of the shearing amount on the estimated defect length has been studied. It appears that the shearing
amount affects the sensibility of the interferometer, but does not affect the estimation of the defect size, because
the shearing amount has been introduced in our equations. Note that the methodology can be employed in many
other interferometric technique as speckle interferometry.
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